

シリコンリナックス株式会社

田(教 めに	5
1.1 開発キット CDROM 構成	5
1.2 開発環境について	6
1.2.1 本キット付属の VirtualBox	6
1.2.2 Debian 6.0 squeeze を使用する場合	6
2 開発PCの環境を整える	7
2.1 USB シリアルドライバ	7
2.2 COMポート通信ソフト	7
2.3 NFS サーバのセットアップ	7
2.3.1 NFS サーバの再起動	8
2.3.2 NFSクライアント側の操作方法	8
3 CAT724の操作方法	9
3.1 初めての立ち上げ	9
3.2 ブートローダの主要コマンド	9
3.3 Linux の起動とログイン	10
3.4 rommode	10
3.5 ネットワークの設定	10
3.6 時計のセット	11
3.7 マイクロ SD メモリーカードのパーティション	11
3.8 SDカードのフォーマット	12
3.9 USB メモリのフォーマット	12
4クロスコンパイル	13
4.1 簡単なプログラムのクロスコンパイル	13
4.2 CAT上でプログラムを実行する	14
5 IO ポート(LED, DIPSW)	15
5.1 LED, DIPSWポートについて	15
5.2 Linux 汎用 gpioドライバ	16
5.2.1 LED0 の制御	
5.2.2 LED2 の制御	19
5.2.3 DIPSW4の読み込み	19
5.3 led 制御プログラム	19
6カーネル	21
6.1 カーネルの入手と展開	21
6.2 コンフィグレーション	21
6.3 config 変更の例(必要が無い限りは不要です)	22
6.4 ビルド	22
6.5 コンパイルしたカーネルのインストール	22
6.5.1 Linux 上でのカーネル書き込み	22
6.5.2 ブートローダでのカーネル(zImage)の書き込み	23

6.6 カーネル起動パラメータ	23
6.7 カーネルモジュールのインストールテクニック	24
7 デバイスドライバ	
7.1 デバイスドライバ入門	
7.2 簡単なデバイスドライバ	
7.2.1ドライバのコンパイル方法	27
7.2.2ドライバモジュールのロードとアンロード	
7.3 LED, DIPSWデバイスドライバ	29
7.4 メジャー番号とマイナー番号	
7.5 LED、DIPSWデバイスドライバソースコード	
7.5.1 DIPSW, LEDドライバのロードと実行	
7.6 デバイス番号の自動取得	
7.7 完成したドライバの組み込み	41
7.8 モジュールの自動ロード	41
8 作成したソフトの自動起動	43
8.1 簡単な自動起動	44
8.2 スタートストップ スクリプト	
9 デバイスドライバの高度なプログラミング	47
9.1 メモリの確保解放	47
9.2 割り込み	
9.3 プロセスの停止、再開	
9.4 完了通知 completion	
9.5 セマフォ	
9.6 ソフトウェアタイマと割り込み ボトムハーフ その1 tasklet	53
9.7 ソフトウェアタイマと割り込みボトムハーフ その2 workqueue	54
9.8 スレッド型割り込みを使ったボトムハーフ	
9.9 カーネルスレッド	
9.10 sysfsを使ったドライバ変数の書き換え	
9.11 物理メモリの確保とmmap()	60
10 Debian SH を使った本格システムの構築	
10.1 SDメモリカード、USBメモリカードのフォーマット	
10.2 Debian SH ベースの展開	64
10.3 設定ファイルの記述	
10.4 カーネル起動パラメータの書き換え	
10.5 debian sh の記動とログイン	
10.6 追加のパッケージのインストール	67
10.7 apt-get	
11 最小ミニルートの構築	
11.1 依存ライブラリの調査	
le - la / l / / / / L/.a - B/.a	

11.2 必要なファイルを集める	69
11.3 chroot で動作確認する	71
11.4 JFFS2 イメージを作る	72
11.5 rootfs 領域の消去とイメージの書き込み(Linux上での方法)	72
11.6 rootfs 領域の消去とイメージの書き込み(bootloader 上での方法)	73
11.7 カーネル起動パラメータ	73

1 はじめに

本書は組み込み Linux ボード CAT724 シリーズ向けの 組み込み Linux ガイドです。本書をお客様のアプリケー ション作成にお役立てください。

1.1 開発キット CDROM 構成

開発キット CDROM は以下の構成です。

VirtualBox	開発用 PC にインストールする仮想 PC ソフト
bootloader	CAT724 ブートローダ (/dev/mtdblock0)
cross-tools	開発用 PC にインストールするクロスコンパイラ
toolchain-amd64	64bit OS 用
` toolchain-i386	32bit OS 用
debian-sh	SH4 向け debian システム
` squeeze-sh4	
base	
` packages	
kernel	CAT724 カーネル、ソースコード及びバイナリ
rootfs	CAT724 内蔵 FLASH ルートファイルシステム
` sample_driver	本ガイドで解説しているサンプルドライバ
countdrv	
hellodrv	
kmalloc	
leddipswdriver1	
leddipswdriver2	
lock-sample	
poll_test	
software_timer	
software_timer_ta	sklet
software_timer_wo	orkqueue
timer_warikomi	
waittest	
` waittest2	

1.2 開発環境について

本機のプログラムを開発するためにパソコンを1台ご用意ください。表に示す環境で動作確認しています。本書で は debian 6.0 (通称 squeeze)システムを奨励しています。PC に debian 6.0 squeeze をインストールするか、もしく は VirtualBox などの仮想 PC 環境を活用して debian 6.0 squeeze をインストールしてください。

奨励環境 Windows 7 32bit/64bit + VirtualBox debian 6.0 squeeze

動作可能環境 Windows VISTA, XP, debian 6.0 squeeze

1.2.1 本キット付属の VirtualBox

VirtualBox は GNU GPL Version2 ライセンスで配布されるフリーな仮想PCソフトウェアです。本キットには VirtualBox 実行環境と、クロスコンパイラをインストール済みの debian 6.0 squeeze ディスクイメージが添付されて います。本キットを使用することにより SH4 クロスコンパイラを素早く導入する事が出来ます。

詳しくは別紙 VirtualBox のインストールをご覧ください。

1.2.2 Debian 6.0 squeeze を使用する場合

開発に必要なユーティリティをインストールします

apt-get update

apt-get install build-essential nfs-kernel-server samba dpkg-dev dpkg-cross# apt-get install libncurses5-dev

32bit または 64bit の debian 6.0 squeeze が使用できます。PC に debian 6.0 squeeze をインストールした場合は以下の操作によりクロス環境の導入ができます。

```
CDROM 内の cross-tools/ に保存されています。
```

32bit PC 版 ディレクトリ名 toolchain-i386 64bit PC 版 ディレクトリ名 toolchain-amd64

上記ディレクトリを PC 内にコピーします。

例) 32bitPC で /home/kaihatsu にコピーしたとします。

root ユーザになります \$ su -

Passwd:

/etc/apt/sources.list に 1 行追加します。最後の ./ も必要です。

deb file:/home/kaihatsu/toolchain-i386 ./

クロスツールのインストール

apt-get update

apt-get install gcc-4.4-sh4-linux-gnu

apt-get install g++-4.4-sh4-linux-gnu

2 開発PCの環境を整える

2.1 USB シリアルドライバ

CAT724 のコンソールは USB シリアルとなっています。

EB724A ベース基板 CN10 USBminiB 端子

FDSI社 シリアル変換チップ FT232RL

Windows7 であればドライバ不要です(自動的にインストールされます)

WindowsVISTA, XP をご利用の方は FTDI 社のサイトから VCP ドライバを入手しインストールしてください。

http://www.ftdichip.com/

→ Drivers を選択する

→ VCP Drivers を選択する

→ Windows を選択する

2.2 COMポート通信ソフト

CAT724はシリアルポートをコンソールとして利用します。開発PCには何かしらのCOMポート通信ソフトが必要です。本書では TeraTerm を推奨します。

http://sourceforge.jp/projects/ttssh2/

CAT724 コンソールボーレート

115200bps, 8bit, 1stopbit, ノンパリティ, 文字コード UTF-8

2.3 NFS サーバのセットアップ

開発環境PCで以下のコマンドをタイプしてください。

NFS サーバのインストール (本キット付属 CDROM の debian では既にインストールされています)

開発 PC の root ユーザコマンドラインでタイプします

apt-get install nfs-kernel-server

エクスポート(共有)ディレクトリの設定

開発 PC の root ユーザコマンドラインでタイプします

vi /etc/exports

以下ファイルの中身

/etc/exports: the access control list for filesystems which may be exported

to NFS clients. See exports(5).

/home 192.168.1.0/255.255.255.0(ro,no_root_squash,no_subtree_check)

上の例では /home 位置を、192.168.1.0/255.255.255.0 LAN に接続された全てのホストに対し、「ReadOnly」、

「root 権限でのマウントを許可」の条件で共有を許しています。 255.255.255.0と"("(括弧)の間にはスペースを入れてはいけません。

2.3.1 NFS サーバの再起動

開発 PC の root ユーザコマンドラインでタイプします

/etc/init.d/nfs-kernel-server restart

2.3.2 NFSクライアント側の操作方法

CAT724はNFSクライアント側になります。CAT724側からは mount コマンドにて サーバの共有ディレクトリのマウントを行います。

CAT724 の root ユーザコマンドラインでタイプします

mount 192.168.1.2:/home /mnt -o ro,tcp

書式は

mount サーバの IP アドレスもしくはホスト名:/サーバのディレクトリ マウント先 -o オプション オプションの例 -o ro リードオンリ、 tcp TCP 接続を利用する

になります。

3 CAT724の操作方法

3.1 初めての立ち上げ

- 1. CAT724の miniUSB ポートとPCを接続します
- 2. TeraTerm でシリアルポート COM x を開きます。
- 3. ボーレートを 115200bps とします
- 4. CAT724 の電源を投入します。

CAT724の電源を投入するとブートローダが立ち上がります。

CATBOOT for CAT724 Ver 1.94 build Sep 9 2011 18:23:37

>>help admin: administrator mode boot: boot linux kernel dipsw: display dipsw led: led on/off eeprom: dump eeprom help: show command list setmac: set mac address setparam: set kernel paramater setkernelsize: set kernel size timer: timer interrupt on/off reset: hardware reset debug: show debug info sddump: SD raw dump dir: print directry cat: print file md5: print md5sum flashwrite: flash write flasherase: flash erase

3.2 ブートローダの主要コマンド

boot Linux 起動 dir マイクロ SD メモリのファイル表示 マイクロ SD メモリは、第一パーティションを FAT フォーマットとしてください flasherase 開始番地(HEX) 長さ(HEX) FlashRomの消去

flashwrite	ファイル名	開始番地(HEX)	FlashRomの書き込み	
setparam				
-d	デフォルト値			
-s SDメモリの第2パーティションを rootfs にする設定				
-u	USB メモリの第2パーティションを rootfs にする設定			

3.3 Linux の起動とログイン

ブートローダで boot とタイプすると Linux が起動します。login: プロンプトに対して root ユーザ、パスワード初期値 root でログインできます。

```
初期値
```

管理ユーザ名	root	パスワ	ード	root
一般ユーザ名	kaihatsu パスワ	ード	kaihats	u

3.4 rommode

本装置は電源の即断に対応するため root ファイルシステムはリード・オンリーになっています。ファイルを編集する際は rommode コマンドでリード・ライトに変更してください。

CAT724 の root ユーザで操作 # rommode rw リード・ライトモード ファイルの編集可能 # rommode ro リード・オンリーモード ファイルの編集不可能(電源即断可能)

3.5 ネットワークの設定

/etc/network/interfaces に記載します。vi エディタで編集してください。

CAT724の root ユーザで操作 # rommode rw (リード・ライトモードにする) # vi /etc/network/interfaces

dhcp による自動割り当てとする場合

```
# The primary network interface
auto eth0
iface eth0 inet dhcp
#iface eth0 inet static
# address 172.16.0.52
# netmask 255.255.0.0
# gateway 172.16.0.1
```

固定 IP 割り当てとする場合(例)

The primary network interface auto eth0 #iface eth0 inet dhcp iface eth0 inet static address 192.168.1.3 netmask 255.255.255.0 gateway 192.168.1.1

rommode ro (リード・オンリモードにする) 反映させるために再起動してください。

3.6 時計のセット

date -s "2011/9/12 18:14:00"

"年/月/日時:分:秒"の書式で入力します。OSの時間(ソフトウェア時計)がセットされます。ソフト時計はOS内部の変数です。電源を切ると消えてしまいます。

hwclock --systohc

dateコマンドでセットしたソフトウェア時計をRTC(ハードウェア時計)に転送します。

3.7 マイクロ SD メモリーカードのパーティション

マイクロ SD メモリーカード(以下SDカードと略記)は第一パーティションをFATフォーマットとすることを推奨します。

- Windows 系OSは、リムーバブルメディアは第一パーティションしか認識しない
- Windows 系OSとのデータの交換はFATで行う
- CAT724のブートローダも第一パーティションがFATであることを前提としている

といった理由があります。

4G バイトの SD メモリーカードをのパーティションを作成する例

CAT724 の root ユーザで操作

cfdisk /dev/mmcblk0 (USB メモリを使用するときは # cfdisk /dev/sda とします)

cfdisk (util-linux-ng 2.17.2)

Disk Drive: /dev/mmcblk0 Size: 3965190144 bytes, 3965 MB Heads: 122 Sectors per Track: 62 Cylinders: 1023

Name Flags Part Type FS Type [Label] Size (MB)

mmcblk0p1	Primary	FAT16	[]	127.81
mmcblk0p2	Primary	Linux ext3			3500.99
mmcblk0p3	Primary	Linux swap	/ Solari	s	333.06
[Bootable][Dele [Quit][Type	ete][H][Units	elp] [Maxi 5] [Write	mize]]	[Prii	nt]

Quit program without writing partition table

cfdisk ユーティリティでは

- カーソルキーの左右で下段のメニューを選択
- カーソルキーの上下でパーティション位置を選択

となります。 パーティション ID は

FAT16	0x06
Linux	0x83
LinuxSwap	0x82
を使用してください。	

を使用してください。

3.8 SDカードのフォーマット

CAT724 の root ユーザで操作	
# mkdosfs -F16 /dev/mmcblk0p1	第一パーティションを FAT でフォーマット
# mkfs.ext3 /dev/mmcblk0p2	第二パーティションを ext3 でフォーマット
# mkswap /dev/mmcblk0p3	第三パーティションを swap 領域としてフォーマット

3.9 USB メモリのフォーマット

CAT724 の root ユーザで操作	
# mkdosfs -F16 /dev/sda1	第一パーティションを FAT でフォーマット
# mkfs.ext3 /dev/sda2	第二パーティションを ext3 でフォーマット
# mkswap /dev/sda3	第三パーティションを swap 領域としてフォーマット

4 クロスコンパイル

4.1 簡単なプログラムのクロスコンパイル

以下のような簡単なプログラムを書き、クロスコンパイルを行って実行させてみましょう。

```
開発 PC の一般ユーザコマンドラインでタイプします
$ vi hello.c
```

#include <stdio.h></stdio.h>
#include <stdlib.h></stdlib.h>
int main(){
int i;
char *p;
printf("hello sh-linux world\n");
// 1M バイトメモリ確保
p=malloc(1024*1024);
while(1){
printf("main=%08x, printf=%08x, malloc=%08x, i=%08x\n",
main, printf, p, &i);
sleep(1); // 1 秒スリープ
}
}

普通にコンパイルを行います。

```
開発 PC の一般ユーザコマンドラインでタイプします
$ gcc hello.c
```

開発PCで実行

```
開発 PC の一般ユーザコマンドラインでタイプします

$ ./a.out

hello sh-linux world

main=004005d4, printf=00400498, malloc=7ce39010, i=7e749d14

main=004005d4, printf=00400498, malloc=7ce39010, i=7e749d14

main=004005d4, printf=00400498, malloc=7ce39010, i=7e749d14
```

:略 CTRL+C で停止します

gccの出力ファイル名のデフォルトは a.out です。これは-oオプションで変更することが出来ます。また UNIX では カレントディレクトリに実行パスが通っていませんので、カレントディレクトリを示す ./ を頭に付けて実行します。

クロスコンパイルを行う

CAT724 では

開発 PC の一般ユーザコマンドラインでタイプします

\$ sh4-linux-gnu-gcc hello.c

とします。

結果を確かめる

開発 PC の一般ユーザコマンドラインでタイプします

\$ file a.out

a.out: ELF 32-bit LSB executable, Renesas SH, version 1 (SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.26, not stripped

開発PCで実行してみる

開発 PC の一般ユーザコマンドラインでタイプします

\$./a.out

-bash: ./a.out: cannot execute binary file

実行できません。

4.2 CAT上でプログラムを実行する

コンパイルしたプログラムを CAT 機で実行しましょう。 CAT 上で以下のコマンドをタイプし、開発 PC のディレクトリを NFS マウントします。

CAT724 の root ユーザコマンドラインでタイプします

mount 192.168.1.2:/home /mnt -o ro,tcp

書式 mount IP アドレスもしくはホスト名:/共有ディレクトリ /マウント先

-o オプション ro は ReadOnly, tcp は TCP 接続を利用する(デフォルトは UDP)

コンパイルした a.out の実行

CAT724 の root ユーザコマンドラインでタイプします # cd /mnt/kaihatsu (a.out ファイルのある場所に移動)

CAT724 の root ユーザコマンドラインでタイプします

./a.out

hello sh-linux world main=004005a0, printf=004003c0, malloc=296e2008, i=7bbaed8c main=004005a0, printf=004003c0, malloc=296e2008, i=7bbaed8c main=004005a0, printf=004003c0, malloc=296e2008, i=7bbaed8c

:略 CTRL+C で停止

5 IO ポート(LED, DIPSW)

5.1 LED, DIPSWポートについて

Linuxとは離れますが、CAT724のハードウェア的なことをまとめます。CAT724のLEDとDIPSWの回路を抜粋して記載します。基板上のシルク印刷はLED1,LED2となっていますが、ソフトウェア上は0始まりとします。LED0はCAT724 CPUボード上の「LED1」とします。

• LED0, 1

LED2, 3, 4, 5

•

•

2 21/	LED4	SML-512MW	R27	270	PTG3
3.54	LED3	SML-512MW	R26	270	PTG2
[LED]	LED2	SML-512MW	R25	270	PTG1
	LED1	SML-512MW	R24	270	PTG0

DIPSW0, 1, 2, 3

• DIPSW4, 5, 6, 7

LED0は回路図上のPTJ6に接続されています。PTJ6は「ポートJの第6ビット」の意味です。ポートJ第6ビット を論理レベル1にすると電圧がHレベルとなり、LEDに向かって電流が流れLEDが点灯します。論理レベルOにす ると消灯します。

5.2 Linux 汎用 gpio ドライバ

CAT724 では Linux 標準の gpioドライバが使用できます。

# cat /sys/kernel/debug/gpio				
を実行すると各 GPIO の接続先が確認できます。				
gpio-0 (GPIO_PTA7) in hi			
gpio-1 (GPIO_PTA6) in hi			
gpio-2 (GPIO_PTA5) in hi			
gpio-3 (GPIO_PTA4) in hi			
gpio-4 (GPIO_PTA3) in hi			
gpio-5 (GPIO_PTA2) in hi			
gpio-6 (GPIO_PTA1) in hi			
gpio-7 (GPIO_PTA0) in hi			
gpio-8 (GPIO_PTB7) in hi			
gpio-9 (GPIO_PTB6) in hi			
gpio-10 (GPIO_PTB5) in	hi	(SW2-4 /dev/dipsw7)	
gp10-11 (GP10_PIB4 gpio-12 (GP10_PIB3) 1N) in	nı bi	(SW2-3 / dev/d1pSW6)	
gpio-13 (GPIO_PTBS) in	hi	(SW2-1 /dev/dipsw4)	
gpio-14 (GPIO_PTB1) in hi			
gpio-15 (GPIO_PTB0) in hi			
gpio-16 (GPIO_PTC7) in lo			
gpio-17 (GPIO_PTC6) in lo			
gpio-18 (GPIO_PTC5) in Io			
gpio-19 (GPIO_PTC4) in Io			
gpio-20 (GPIO_PTC3) in Io			
gpio-21 (GPIO_PTC2) in Io			
gpio-22 (GPIO_PTC1) in Io			
gpio-23 (GPIO_PTC0) in Io			
gpio-24 (GPIO_PTD7) in Io			
gpio-25 (GPIO_PTD6) in lo			
gpio-26 (GPIO_PTD5) in lo			
gpio-27 (GPIO_PTD4) in lo			
gpio-28 (GPIO_PTD3) in lo			
gpio-29 (GPIO_PTD2) in lo			
gpio-30 (GPIO_PTD1) in lo			
gpio-31 (GPIO_PTD0) in Io			
gpio-32 (GPIO_PTE7) in hi			

gpio-33 (GPIO_PTE6) in lo			
gpio-34 (GPIO_PTE5) in lo			
gpio-35 (GPIO_PTE4) in lo			
gpio-36 (GPIO_PTE3) in lo			
gpio-37 (GPIO_PTE2) in Io			
gpio-38 (GPIO_PTE1) in lo			
gpio-39 (GPIO_PTE0) in lo			
gpio-40 (GPIO_PTF7) in lo			
gpio-41 (GPIO_PTF6) in lo			
gpio-42 (GPIO_PTF5) in lo			
gpio-43 (GPIO_PTF4) in lo			
gpio-44 (GPIO_PTF3) in lo			
gpio-46 (GPIO_PTF1) in lo			
gpio-47 (GPIO_PTF0) in lo			
gpio-48 (GPIO_PTG5) in lo			
gpio-49 (GPIO_PTG4) in lo			
gpio-50 (GPIO_PTG3) out hi	(LED4	/dev/led5)
gpio-51 (GPIO_PTG2) out hi	(LED3	/dev/led4) /dev/led2)
gpio-53 (GPIO_PTG1) out hi	(LED2 (LED1	/dev/led2)
apio-54 (GPIO PTH7) in hi	,	、	,,,
gpio-55 (GPIO PTH6) in hi			
gpio-56 (GPIO_PTH5) in hi			
gpio-57 (GPIO_PTH4) in hi			
gpio-58 (GPIO_PTH3) in hi			
gpio-59 (GPIO_PTH2) in hi			
gpio-60 (GPIO_PTH1) in hi			
gpio-61 (GPIO_PTH0) in hi			
gpio-62 (GPIO_PTJ7) out lo	(LED2	/dev/led1)
gpio-63 (GPIO_PTJ6) out hi	(LED1	/dev/led0)
gpio-69 (GPIO_PTK7) in hi			
gpio-70 (GPIO_PTK6) in hi			
gpio-71 (GPIO_PTK5) in hi			
gpio-72 (GPIO_PTK4) in hi			
gpio-73 (GPIO_PTK3) in hi			
gpio-74 (GPIO_PTK2) in hi			
gpio-75 (GPIO_PTK1) in hi			
gpio-76 (GPIO_PTK0) in hi			
gpio-77 (GPIO_PTL7) in lo			
gpio-78 (GPIO_PTL6) in lo			
gpio-79 (GPIO_PTL5) in lo			
gpio-80 (GPIO_PTL4) in lo			
gpio-81 (GPIO_PTL3) in lo			

gpio-82 (GPIO_PTL2) in lo		
gpio-83 (GPIO_PTL1) in hi		
gpio-84 (GPIO_PTL0) in hi		
gpio-85 (GPIO_PTM7) in hi		
gpio-86 (GPIO_PTM6) in hi		
gpio-87 (GPIO_PTM5) in hi		
gpio-88 (GPIO_PTM4) in hi		
gpio-89 (GPIO_PTM3) in hi		
gpio-90 (GPIO_PTM2) in hi		
gpio-91 (GPIO_PTM1) in lo		
gpio-92 (GPIO_PTM0) out hi		
gpio-93 (GPIO_PTN7) in hi		
gpio-94 (GPIO_PTN6) in hi		
gpio-95 (GPIO_PTN5) in lo		
gpio-96 (GPIO_PTN4) in hi		
gpio-97 (GPIO_PTN3) in hi		
gpio-98 (GPIO_PTN2) in hi		
gpio-99 (GPIO_PTN1) in lo		
gpio-100 (GPIO_PTN0) in Io		
gpio-111 (GPIO_PTR5) in	hi -	(SW1-2 /dev/dipsw1)
gpio-112 (GPIO_PTR4) in	10	(SW1-1 /dev/dipsw0)
gpio-117 (GPIO_PTS6) in hi		
gpio-118 (GPIO_PTS5) in hi		
gpio-119 (GPIO_PTS4) in hi		
gpio-120 (GPIO_PTS3) in hi		
gpio-121 (GPIO_PTS2) in hi		
gpio-122 (GPIO_PTS1) in hi		
gpio-123 (GPIO_PISO) in hi) in	hi	(Sh1 4 /dow/dingu2)
gpio-132 (GPIO_PTU/ gpio-133 (GPIO PTU6) in	hi	(SW1-4 /dev/dipsw3) (SW1-3 /dev/dipsw2)
gpio-134 (GPIO_PTU5) in Io		
gpio-135 (GPIO_PTU4) in hi		
gpio-136 (GPIO_PTU3) in hi		
gpio-137 (GPIO_PTU2) in lo		
gpio-138 (GPIO_PTU1) in Io		
gpio-139 (GPIO_PTU0) in hi		
gpio-140 (GPIO_PTV7) in hi		
gpio-141 (GPIO_PTV6) in hi		
gpio-142 (GPIO_PTV5) in hi		
gpio-143 (GPIO_PTV4) in hi		
gpio-144 (GPIO_PTV3) in hi		
gpio-145 (GPIO_PTV2) in hi		

gpio-146 (GPIO_PTV1) in hi
gpio-147 (GPIO_PTV0) in hi
gpio-156 (GPIO_PTX7) out lo
gpio-157 (GPIO_PTX6) in hi
gpio-158 (GPIO_PTX5) in lo
gpio-159 (GPIO_PTX4) in lo
gpio-160 (GPIO_PTX3) in lo
gpio-161 (GPIO_PTX2) in lo
gpio-162 (GPIO_PTX1) out lo
gpio-163 (GPIO_PTX0) in hi

これにより LEDO が接続されている PTJ6 は gpio-63 であることがわかります。

5.2.1 LED0の制御

ポートを出力にする

echo out > /sys/class/gpio/gpio63/direction

ポートを High にする(LED0 が点灯する)

echo 1 > /sys/class/gpio/gpio63/value

ポートをLow にする(LED0 が消灯する)

echo 0 > /sys/class/gpio/gpio63/value

5.2.2 LED2の制御

LED2はPTG0 (gpio-53)です。LED2から5は負論理です。

ポートを出力にする

echo out > /sys/class/gpio/gpio53/direction

ポートを High にする(LED0 が消灯する)

echo 1 > /sys/class/gpio/gpio53/value

ポートをLowにする(LED0が点灯する)

echo 0 > /sys/class/gpio/gpio53/value

5.2.3 DIPSW4の読み込み

SW1 (dipsw0 から 3) は CAT724 CPU ボード上にある小さな DIPSW です。小さくて変更しにくいため、ベースボード EB724 上にある SW2 (dipsw4 から 7)で実験します。 SW2-1 は PTB2 (gpio-13)です。

ポートを入力にする

echo in > /sys/class/gpio/gpio13/direction

スイッチの論理地を読む

ポートを出力にする

cat /sys/class/gpio/gpio13/value

1

5.3 led 制御プログラム

C 言語で記述すると次のようになります。LED を ON/OFF させるプログラムです。

 $\mathsf{CDROM}\,\mathcal{O}\,(\mathsf{sample_program/gpio_led/led.c})$

```
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#define LED0_DEVICE "/sys/class/gpio/gpio63/value"
int led(int value){
         int fd;
         char c;
         fd = open(LED0_DEVICE, O_RDWR);
         if(fd<0){
                  perror(LED0_DEVICE);
                  exit(1);
        }
         if(value)
                  c = '1';
         else
                  c = '0';
         write(fd, &c, 1);
         close(fd);
3
int main(){
```

コンパイル(開発PCにて)

開発 PC の一般ユーザコマンドラインでタイプします \$ sh4-linux-gnu-gcc led.c -O2 -g -o led

実行(CAT724にて)

CAT724 の root ユーザコマンドラインでタイプします # ./led 消灯 点灯 消灯

6 カーネル

カーネルはオペレーションシステムの中心部で、プロセスのスケジューリングやメモリ、IOの管理を行っています。 またネットワークやファイルシステムもカーネルの仕事です。カーネルをコンフィグレーションすることで、デバイスド ライバの追加削除や、読み書きできるファイルシステム形式の追加削除、ネットワーク機能の追加削除が出来ま す。

6.1 カーネルの入手と展開

CDROM 内にあるカーネルを展開してください。

開発 PC の一般ユーザコマンドラインでタイプします \$ mkdir ~/cat-kernel \$ cd ~/cat-kernel \$ tar xzfv /CDROM をコピーしたディレクトリ/kernel/linux-3.0.4_cat724_日付.tgz \$ cd linux-3.0.4 cat724/

6.2 コンフィグレーション

以下のコマンドをタイプし、カーネルを展開してください。

開発 PC の一般ユーザコマンドラインでタイプします

\$ make cat724_defconfig CAT724 デフォルトのコンフィグレーション

\$ make menuconfig

ここでは上下左右のカーソル、スペースキーで選択が出来ます。<*>印はカーネルに組み込む機能、<M>印は外部モジュールファイルとしてビルドする事を示します。

コンフィグレーションは特に指定のない限り変更しないでください。

6.3 config 変更の例(必要が無い限りは不要です)

CAT724 出荷時のカーネルは IPv6 サポートが無効になっています。これを有効にする例を示します。

開発 PC の一般ユーザコマンドラインでタイプし、config メニューを起動します。
\$ make menuconfig
Networking support ---> [enter を押す]
Networking options ---> [enter を押す]
<*> The IPv6 protocol ---> [Y を押す]
カーソルキーの右を押して <Exit> を選択(enter を押す)
何度か繰り返してコンフィグレーションメニューを終了する
Do you wish to save your new configuration?
to continue.

|の質問に <YES> を選択して保存終了する (<NO> を選択すると保存せず終了する) 。

6.4 ビルド

以下のコマンドをタイプし、カーネルをビルドしてください。

開発 PC の一般ユーザコマンドラインでタイプします

\$ make -j4

コンフィグレーションした機能および開発環境PCのスペックによりますが、1GHzの機械でおよそ5~8分程度でコンパイルが終了します。-j はジョブ数(並列コンパイル数)のオプションで、開発PCがマルチコア CPU の場合、 CPU 数 x1.5 倍ほどにします。

コンパイル後にできあがった zImage ファイルがカーネルです。zImage ファイルは以下の場所にできあがります。

開発 PC の一般ユーザコマンドラインでタイプします

\$ Is -I arch/sh/boot/zImage

ROMエリアのカーネル保存領域はデフォルトで 0x2E0000 (3,014,656) バイトです。zImage ファイルはこのサイズ 以下に収まるよう、コンフィグレーションを行ってください。なお、ROM エリアのカーネル保存領域は bootloader のメ ニューにて変更することが出来ます。詳しくはブートローダーの章を参照してください。

6.5 コンパイルしたカーネルのインストール

6.5.1 Linux 上でのカーネル書き込み

Linux が動作中であればシェル上で zImage ファイルを /dev/mtdblock1 にコピーし、カーネルのアップデートが出来ます。

CAT724 の root ユーザコマンドラインでタイプします

cp zImage /dev/mtdblock1

Linux 上で、CAT724 でのメモリーは以下のデバイスとしてアクセスできます

/dev/mtdblock0	FLASH ブートローダ
/dev/mtdblock1	FLASH カーネル(zImage)
/dev/mtdblock2	FLASH ルートファイルシステム(rootfs)
/dev/mtdblock3	SRAM (バッテリーバックアップ 512K)

6.5.2 ブートローダでのカーネル(zImage)の書き込み

本機のブートローダからカーネル(zImage)を FLASHROM に書き込むことができます。

・注意: SDカードの第一パーティションが FAT であること

本機にてSDカードにパーティションを作成したりFAT でフォーマットできます。詳しくは3章に記載があります。

SDカードの第一パーティションが FAT フォーマット済みであるとして、以下のように zImage ファイルを書き込みます。

mount /dev/mmcblk0p1 /media/sd/

cp /mnt/kaihatsu/cat-kernel/linux-3.0.4_cat724/arch/sh/boot/zImage /media/sd/

sync

umount /media/sd/

再起動しブートローダで次のように作業します

CATBOOT for CAT724 Ver 1.94 build Sep 9 2011 18:23:37 >>dir (ファイル名の確認) >>admin password:******* パスワードは silinux です ok. #>flashwrite zImage kernel

6.6 カーネル起動パラメータ

カーネルには種々の起動パラメータがあります。起動パラメータを変更することでカーネルの動作を変更することが出来ます。ブートローダメニューの setparam コマンドで変更することが出来ます。カーネル起動パラメータは EEPROMに記録されます。最大文字数は 240 文字です。

主要なパラメータを紹介します。

console=ttySC0,11	5200 コンソール出力先の指定とボーレート(ほぼ必須)	
root=/dev/mtdblock	<2 root としてマウントするデバイスの指定	
	/dev/mtdblock2 などを指定してください。	
	/dev/mtdblock2 は内蔵 FLASH です	
ro 起	2動時にルートをリードオンリでマウントします(必須)	
rootfstype=jffs2	Flashメモリをマウントするときには	
	ファイルシステム形式の指定が必要です(必須)	

例1 CAT 内蔵 FLASH ROM(/dev/mtdblock2)を root としてマウントする場合(標準)

```
CAT724 のブートローダでタイプします
>> admin
password:silinux
```

#> setparam console=ttySC0,115200 root=/dev/mtdblock2 ro rootfstype=jffs2

例3 エイリアスとして-d (デフォルト)、-s (SD メモリカード)、-u (USB ストレージ)を rootfs とする設定ができます。

#>setparam -d (内蔵 FLASH 工場出荷時デフォルト)
save kernel command line = console=ttySC0,115200 root=/dev/mtdblock2 rootfstype=jffs2 ro
#>setparam -s (SD カードの第2パーティションを rootfs とする)
save kernel command line = console=ttySC0,115200 root=b302 rootdelay=3 rootwait ro
#>setparam -u (USB ストレージの第2パーティションを rootfs とする)
save kernel command line = console=ttySC0,115200 root=/dev/sda2 rootdelay=5 rootwait ro

6.7 カーネルモジュールのインストールテクニック

カーネルコンフィグレーション時にモジュールとしてビルドしたファイルのインストールには少しこつが必要です。 カーネルのソースツリートップのMakefileのINSTALL_MOD_PATHを修正します。

#

INSTALL_MOD_PATH specifies a prefix to MODLIB for module directory

relocations required by build roots. This is not defined in the

makefile but the arguement can be passed to make if needed.

#

INSTALL_MOD_PATH=~/cat-module

モジュールは INSTALL_MOD_PATH で指定したディレクトリ下にインストールされます。

```
開発 PC の一般ユーザコマンドラインでタイプします

$ make modules_install

$ tree -d ~/cat-module

/home/ebihara/cat-module/

`-- lib

`-- modules

`-- 3.0.4

|-- build -> /home/kaihatsu/

|-- kernel

| |-- crypto

| |-- drivers
```

base	
block	
ide	
net	
` pcmcia	
fs	
fat	
lockd	
msdos	
nfs	
nls	
` vfat	
` net	
packet	
` sunrpc	
` source -> /home/kaihatsu/	

従って、 $^{\sim}/cat$ -module/をCATのルートに転送します。CATにて以下のコマンドをタイプしてください。

CAT724の root ユーザコマンドラインでタイプします # cp /NFS サーバ/ebihara/cat-module/* / -av # depmod -a

注意: depmod -a 実行時は時計が合っている必要があります。電池切れなどで時計が過去の値(2000年など)になっていると、ドライバモジュールが組み込まれなくなってしまいます。時計を合わせてから depmod -a を実行してください。